
Releasing features at 
the flick of a switch

Dimitri Holsteens



Thank you!



Releasing features at the 
flick of a switch

Dimitri Holsteens

@holstdi
23/10/2018



Once upon a time…



https://blogs.technet.microsoft.com/devops/2016/06/21/a-git-workflow-for-continuous-delivery/



Eliminate Waste



• Trunk based development

• Feature Toggles



FEATURE 
FLAG
TOGGLE 
FLIPPER 
BIT
...



Just a conditional statement…
That’s easy peasy





All Caught Up !

Here’s
an accident waiting to happen… ?



Pete Hodgson, martinfowler.com :

● Technique allowing teams to modify behavior without modifying code

● Various usage categories

● Introduce complexity

○ Can be mitigated by using smart implementation practices, appropriate tools 
and by constraining the number of toggles in our system





‘Do not activate the new price calculation until it’s finished, 
tested and approved’

‘Do not activate the sync with our marketing system until it’s up 
and running’



Release
Toggle

● Decouple deployment 
and actual feature 
release

● Supports trunk based 
development and 
continuous delivery



‘We should be able to turn off this profile export when end-user 
performance degrades due to high I/O impact’

‘We should be able to turn of the push to the accounting 
software since because of it’s instability’



OPS
Toggle

● Kill switches for 
operational reasons

● Support non-functional 
requirements

● Overlap with concept of 
‘Circuit Breakers’



Splitting Traffic

Allow variation of feature toggle state for 
different users 



Controlled Rollout

● Release toggle with traffic 
splitting

● Gradually introduce the feature 
across the userbase

● User cohorts can be random or 
predetermined



A/B Test

● Test user response on 2 variants

● Randomized

● Capture metrics



Canary Release

● Introduce a feature to a very small 
subset of the userbase

● Random or predetermined

● Measure efficiency of the new 
feature before rolling out to 
general product

● Explicit opt-in (and opt-out)



Experiment 
Toggles

● Controlled enabling of 
experimental features

● Random or targeted 
toward specific users 
or classes of users

● Capture metrics to 
evaluate success



‘We can’t enable this feature for customers in Europe since it’s 
not GDPR compliant’

‘Users which have a premium subscription should be able to 
download these courses for offline viewing’



Permission 
Toggles

● Enable or disable parts 
of the software for 
specific classes of 
users

● Not to be confused with 
authorization rules

● AKA ‘Business Toggles’



https://martinfowler.com/articles/feature-toggles.html



Smart implementation 
practices



Simple
Rules

● Keep toggles as short lived as 

possible

○ Avoid leftover flags

○ Make sure long term / permanent 

flags are easily recognizable

● Do not reuse feature toggles

○ Single responsibility principle : 

flag should have exact 1 reason to 

exist



Simple
Rules

● Use proper naming

 Pomolo

 HubspotSyncEnabled

 TI685_HubspotSyncEnabled

● Avoid conflicting flags

● Make default value explicit



Managing toggle Configuration

● Code

● Config

● Database

● Central configuration store (zookeeper, consul, ...)

● Hand-rolled ‘Feature Service’

● ‘Feature as a service’ provider



Factor feature toggles into your 
application design



Branch by abstraction

Application Layer

Database



Abstraction

Application Layer

Database



Abstraction

Application Layer

DatabaseAPI



Abstraction

Application Layer

API



Feature Toggle Packages
Configuration Toggle code Toggle rules

.NET Feature flags sqlserver db Class Static on/off

NFeature custom 
configsection

Enum Static on/off, 
timebased

FeatureToggle code / appsettings
/ sqlserver

Class Static on/off, 
timebased, 
assemblyversion, 
random

FeatureSwitcher code / custom 
config setting

Class Static on/off, 
context evaluation

nToggle code / custom 
config setting

Class Static on/off

Toggler appsettings Class Static on/off

LaunchDarkly SDK faas String FaaS rules

Split.IO SDK faas String FaaS rules



Code Intermezzo



A more complex use case

Support Web Application

Backend Platform

End user Web Application

Storage

Introduce auditing
(and use feature toggles)



Backend Platform API

startup

IAuditEventAggregator

Register<NoOpInfrastructure>



Backend Platform API

startup

IAuditEventAggregator

Register<NoOpInfrastructure>;
If(AuditFeatureEnabled())
{

Register<AuditingInfrastructure>;
}A

u
d

itin
g

 in
fra

s
tru

c
tu

re



IAuditEventAggregator

If(!AuditFeatureEnabled())
{

DisableRoute(“api/audit”);
}

Backend Platform API

A
u

d
itin

g
 fe

a
tu

re
 c

o
d

e

startup

A
u

d
itin

g
 in

fra
stru

ctu
re



Support Web Application

Storage

Backend Platform API

If(BackendApi.IsAuditingEnabled)
{

Render Audit Info Widget
}





Plan for removal

● Self-reporting toggles

○ How often is a toggle consulted ?

○ How often does it return ‘enabled’ ?

● Make explicit removal task in backlog 



Control access to flags

● Different usage categories require different 

security settings

● Audit when, why and by whom flag state is 

changed



Monitor flag state



● Feature toggles can be very 
powerful (but with great power 
comes great responsibility…)

● Plan before you build

● Identify the use case you want to 
solve and how to solve it with as 
little complexity as possible

● Use OOP patterns for smart 
implementation

● Avoid technical debt and keep the 
number of toggles in your system 
to a minimum



All Caught Up !

Here’s a pony.



Thank you !

Dimitri Holsteens

@holstdi

Dimitri Holsteens

@holstdi


